

The BET Bromodomain inhibitor OTX015 affects pathogenetic pathways in preclinical B-cell Tumor models and synergizes with targeted drugs

Eugenio Gaudio

IOR - Institute of Oncology Research

Università della Svizzera Italiana (USI) Lugano, July 21st-22nd July 2016

Overview on OTX015 in lymphoid tumors

- Introduction
- and mechanisms of action of OTX015
- Combination studies
- Possible biomarkers
- Conclusions

• BET Bromodomain inhbitors as single agent in mature B-cell lymphomas: activity

Haematological cancers are among the commonest cancers

Estimated New Cases

				Males	Fema	ales	
	Prostate	220,800	26%			Breast	23
	Lung & bronchus	115,610	14%			Lung & bronchus	10
	Colon & rectum	69,090	8%		X	Colon & rectum	e
	Urinary bladder	56,320	7%			Uterine corpus	5
	Melanoma of the skin	42,670	5%			Thyroid	4
	Non-Hodgkin lymphoma	39,850	5%			Non-Hodgkin lymphoma	3
	Kidney & renal pelvis	38,270	5%			Melanoma of the skin	0
	Oral cavity & pharynx	32,670	4%			Pancreas	2
	Leukemia	30,900	4%			Leukemia	2
	Liver & intrahepatic bile duct	25,510	3%			Kidney & renal pelvis	2
	All Sites	848,200	100%			All Sites	81

Estimated Deaths

			Males	Female	es	
Lung & bronchus	86,380	28%			Lung & bronchus	71,660
Prostate	27,540	9%			Breast	40,290
Colon & rectum	26,100	8%		X	Colon & rectum	23,600
Pancreas	20,710	7%			Pancreas	19,850
Liver & intrahepatic bile duct	17,030	5%			Ovary	14,180
Leukemia	14,210	5%			Leukemia	10,240
Esophagus	12,600	4%			Uterine corpus	10,170
Urinary bladder	11,510	4%			Non-Hodgkin lymphoma	8,310
Non-Hodgkin lymphoma	11,480	4%			Liver & intrahepatic bile duct	7,520
Kidney & renal pelvis	9,070	3%			Brain & other nervous system	6,380
All Sites	312,150	100%			All Sites	277,280

adults

3%

3%

2%

100%

< 20 years of age

Siegel et al, CA: Cancer 2015 Stewart & Wild eds. World Cancer Report 2014

Still too many patients die due to lymphoma

Need of novel therapies

IOSI, unpublished

Many altered pathways = Many therapeutic targets

modified from Testoni et al, Ann Oncology 2015

Many altered pathways = Many therapeutic targets

modified from Testoni et al, Ann Oncology 2015

Epigenome as a therapeutic target

Epigenome alterations, such as abnormal DNA methylation and chromatin structure, are common in cancers

Chromatin modifications are fundamental for the regulation of:

- transcription
- DNA repair
- DNA replication

Importantly, chromatin modifications can be reversible

Different classes of proteins are involved in transcription regulation

Writers

EZH2

Dawson et al, NEJM 2012

Different classes of proteins are involved in transcription regulation

Writers

Erasers

Dawson et al, NEJM 2012

EZH2

HDAC

Different classes of proteins are involved in transcription regulation

Recruitment ~

Writers

Erasers

Readers

EZH2

HDAC

BET Bromodomain proteins

Dawson et al, NEJM 2012

Bromodomain and extra-terminal (BET) protein family

- Nuclear proteins
- Widely expressed
- Recruit transcription factors (P-TEFb) to acetylated chromatin

Mod. From Chiang, Biol Rep 2009

OTX015 Inhibits Binding of BET Bromodomain (BRD) Proteins to Acetylated Histones

phenotype

Wide anti-proliferative activity in lymphomas

100

In vivo anti-tumor activity in lymphoma

REC1 MCL XENOGRAFT

Gaudio, et al. EORTC-NCI-AACR 2015

BET Bromodomain inhibitor OTX015 Inhibition of the activity of important transcription factors

E2F1

DLBCL cell lines

OTX015 affects important biologic processes

transcripts coding for histones, overlapping with those up-regulated by HDAC-inhibitors

MYC and E2F1 targets, genes involved in NFKB/TLR/JAK/STAT pathways

OTX015 in lymphomas **Down-regulation of MYC and MYC targets**

SU-DHL-2

OTX015 in lymphomas **MYC down-regulation is reversible**

OTX015 in lymphomas Down-regulation of TLR/JAK/STAT/NFKB

OTX015 in lymphomas Down-regulation of active NFKB

DMSO, 24hr

p50 (NFKB1)

OTX015 500nM, 24hr

SU-DHL-2

OTX015 in lymphomas Down-regulation of active JAK/STAT3

STAT3

pSTAT3 (Tyr705)

SU-DHL-2

DMSO, 24hr

OTX015 500nM, 24hr

OTX015 in lymphomas **Assessment of combinations**

Molecule

Bendamustine

Doxorubicin

Bortezomib

Ibrutinib

Lenalidomide

Rituximab

Vorinostat

Romidepsin

Decitabine

three GCB-DLBCL two ABC-DLBCL

chemotherapy

chemotherapy

Proteasome inhibitor

BTK inhibitor

Immunomodulant

anti-CD20 moAb

HDAC inhibitor

HDAC inhibitor

demethylating

OTX015 in lymphomas **DLBCL: synergism with several anti-cancer agents**

Best: **M**Everolimus **Ibrutinb M**Rituxmab **Vorinostat**

OTX015 synergises with different compounds

ABC-DLBCL SU-DHL-2 xenograft

Gaudio E, et al. Oncotarget 2016

Bet Bromodomain inhibitors in lymphomas Any biomarkers?

OTX015 in lymphomas **Apoptosis limited to a genetically** defined subgroup of DLBCL

ABC-DLBCL mut *MYD88* mut in CD79B or mut CARD11 **wt TP53**

Mutations in MYD88 and for components of the BCR signalling: significantly associated with apoptosis (P = 0.027)

MYD88, CD79B and CARD11 act on the signalling

Shaffer et al, Annu. Rev. Immunol. 2012

OTX015 in lymphomas **Complete responses in the Phase I**

Amorim, Stathis et al. Lancet Hematology 2016

OTX015 in lymphomas Complete responses in the Phase I

Baseline

Amorim, Stathis et al. Lancet Hematology 2016

- Anti-proliferative activity in mature B-cell lymphoid tumor cell lines
- Mainly cytostatic activity, but apoptosis in genetically defined subgroups
- Down-regulation of MYC and MYC targets target genes
- Down-regulation of MYD88, JAK/STAT3 and NFKB pathways
- Synergism with different agents
- Signs of clinical activity

Conclusions

Acknowledgments Lymphoma & Genomics Research Program

Bertoni group Afua A. Mensah Alberto Arribas Andrea Rinaldi Chiara Tarantelli Elena Bernasconi Eugenio Gaudio Filippo Spriano Ivo Kwee Luciano Cascione Murodzhon Akhmedov Elaine Chung Valdemar Priebe

IOSI, Bellinzona

Emanuele Zucca **Anastasios Stathis** Georg Stussi Franco Cavalli

SAVETHE DATE: June 14-17, 2017

Palazzo dei Congressi Lugano (Switzerland) www.lymphcon.ch

